Second degré

Automatismes

Résoudre dans R les inéquations suivantes :

$$(-x+1)(x-5) < 0$$

$$(-x + 1)(x - 5) < 0$$

 $(-x + 1)(x - 5)$ est un
polynôme de degré 2 qui a
2 racines 1 et 5 et $a < 0$.
 $S =]-\infty$; $1[\cup]5$; $+\infty[$

$$(x-3)(x+4) \ge 0$$

$$(x-3)(x+4) \ge 0$$

 $(x-3)(x+4)$ est un
polynôme de degré 2 qui a
2 racines -4 et 3 et $a > 0$.
 $S =]-\infty; -4] \cup [3; +\infty[$

$$-2x(x + 1) > 0$$

$$-2x(x + 1) > 0$$

 $-2x(x + 1)$ est un
polynôme de degré 2 qui a
2 racines -1 et 0 et $a < 0$.
 $S =]-1;0[$

$$x^2 + 2 \ge 0$$

$$x^{2} + 2 \ge 0$$

Pour tout x de \mathbb{R} , $x^{2} \ge 0$
donc $x^{2} + 2 > 0$.
 $S = \mathbb{R}$

$$(x-3)^2 \le 0$$

$$(x-3)^{2} \le 0$$
Pour tout x de \mathbb{R} ,
$$(x-3)^{2} \ge 0$$
 et
$$(x-3)^{2} \text{ s'annule en 3.}$$

$$S = \{3\}$$

$$5x^2 - 4x < 0$$

$$5x^{2} - 4x < 0$$
équivaut à $x(5x - 4) < 0$

$$x(5x - 4) \text{ est un polynôme de}$$
degré 2 qui a 2 racines 0 et $\frac{4}{5}$
et $a > 0$.
$$S = \left[0\right]; \frac{4}{5}\right[$$

2^e partie

Automatismes

$$4 - x^2 < 0$$

•
$$4 - x^2 < 0$$

équivaut à $(2 - x)(2 + x) > 0$
 $(2 - x)(2 + x)$ est un
polynôme de degré 2 qui a 2
racines -2 et 2 et $a < 0$.
 $S =]-\infty; -2[\cup]2; +\infty[$

$$x^2 - 2x + 1 > 0$$

$$x^{2} - 2x + 1 > 0$$

équivaut à $(x - 1)^{2} > 0$
Pour tout x de \mathbb{R} , $(x - 1)^{2} \ge 0$
et $(x - 1)^{2}$ s'annule en 1.
 $S =]-\infty; 1[\cup]1; +\infty[$

$$-(x+2)^2-3>0$$

$$-(x + 2)^{2} - 3 > 0$$
Pour tout *x* de \mathbb{R} ,
$$-(x + 2)^{2} \le 0 \text{ donc}$$

$$-(x + 2)^{2} - 3 < 0$$

$$S = \emptyset$$

$$x^2 \le 9$$

$$x^2 \le 9$$

équivaut à $x^2 - 9 \le 0$
donc à $(x - 3)(x + 3) \le 0$
 $(x - 3)(x + 3)$ est un
polynôme de degré 2 qui a 2
racines -3 et 3 et $a > 0$.
 $S = [-3;3]$

$$(x+1)^2-25 \ge 0$$

•
$$(x + 1)^2 - 25 \ge 0$$

équivaut à
 $(x + 1 - 5)(x + 1 + 5) \ge 0$
donc à $(x - 4)(x + 6) \ge 0$
 $(x - 4)(x + 6)$ est un polynôme de degré
2 qui a 2 racines -6 et 4 et $a > 0$.
 $S =]-\infty; -6] \cup [4; +\infty[$