Nom:	Prénom :
Évaluation de mathémat	iques n°10 (A)
1. Montrer que la suite strictement positive u définie pour tout enti	ier naturel n par $u_n = 4 \times 3^{n+1}$ est géométrique.
2. Montrer que la suite u définie pour tout entier naturel n par u_0 =	= 5 et $u_{n+1} = 3u_n - 5$ n'est pas géométrique.
3. On considère la suite u définie par $u_0=2$ et $u_{n+1}=4\times u_n$. Expri	imer u_n en fonction de n . Justifier.

4. On considère la suite strictement positive u définie par $u_0=0,5$ et $u_{n+1}=u_n\times 1,02$. Déterminer son sens de variation.

5. u est la suite géométrique de raison 1,02 avec $u_0=0,5$. Calculer la somme $u_0+u_1+...+u_{15}$ (arrondir au centième).

Nom :	Prénom :	
	Évaluation de mathématiques n°10 (B)	
1. Montrer que la suite strictement posi	itive u définie pour tout entier naturel n par $u_n = 2 \times 4^{n+1}$ est q	zéométrique.
2. Montrer que la suite u définie pour t	out entier naturel n par $u_0=10$ et $u_{n+1}=3u_n-15$ n'est pas gé	ométrique.
3. On considère la suite u définie par u_0	$u_0 = 4$ et $u_{n+1} = 2 \times u_n$. Exprimer u_n en fonction de n . Justifier.	
4. On considère la suite strictement pos	sitive u définie par $u_0=1,02$ et $u_{n+1}=u_n imes 0,5$. Déterminer so	n sens de variation.

5. u est la suite géométrique de raison 0,5 avec $u_0=1,02$. Calculer la somme $u_0+u_1+...+u_{15}$ (arrondir au centième).

Corrigé de l'évaluation de mathématiques n°10 (A)

1. Comme $u_n > 0$ pour tout entier naturel n, on peut calculer :

$$\frac{u_{n+1}}{u_n} = \frac{4 \times 3^{(n+1)+1}}{4 \times 3^{n+1}} = \frac{3^{n+2}}{3^{n+1}} = 3^{(n+2)-(n+1)} = 3^1 = 3$$

La suite u est donc géométrique de raison 3 et son premier terme est $u_0 = 4 \times 3^{0+1} = 4 \times 3 = 12$.

- 2. $u_0 = 5$, $u_1 = 3u_0 5 = 3 \times 5 5 = 10$ et $u_2 = 3u_1 5 = 3 \times 10 5 = 25$ donc $\frac{u_1}{u_0} = 2$ et $\frac{u_2}{u_1} = 2$,5 ce qui prouve que la suite u n'est pas géométrique.
- 3. Pour tout entier naturel n, $u_{n+1} = 4 \times u_n$ donc <u>la suite u est géométrique de raison 4</u> donc, d'après un théorème, pour tout entier naturel n, $u_n = 2 \times 4^n$.
- 4. Pour tout entier naturel n, $\frac{u_{n+1}}{u_n} = 1,02 > 1$ donc la suite u est strictement croissante.
- 5. D'après un théorème, $u_0 + u_1 + ... + u_{15} = 0.5 \times \frac{1 1.02^{16}}{1 1.02}$.

Corrigé de l'évaluation de mathématiques n°10 (B)

1. Comme $u_n > 0$ pour tout entier naturel n, on peut calculer :

$$\frac{u_{n+1}}{u_n} = \frac{2 \times 4^{(n+1)+1}}{2 \times 4^{n+1}} = \frac{4^{n+2}}{4^{n+1}} = 4^{(n+2)-(n+1)} = 4^1 = 4$$

La suite u est donc géométrique de raison 4 et son premier terme est $u_0=2\times 4^{0+1}=2\times 4=8$.

- 2. $u_0 = 10$, $u_1 = 3u_0 15 = 3 \times 10 15 = 15$ et $u_2 = 3u_1 15 = 3 \times 15 15 = 30$ donc $\frac{u_1}{u_0} = 1,5$ et $\frac{u_2}{u_1} = 2$ ce qui prouve que la suite u n'est pas géométrique.
- 3. Pour tout entier naturel n, $u_{n+1} = 2 \times u_n$ donc <u>la suite u est géométrique de raison 2</u> donc, d'après un théorème, pour tout entier naturel n, $u_n = 4 \times 2^n$.
- 4. Pour tout entier naturel n, $\frac{u_{n+1}}{u_n} = 0.5 < 1$ donc la suite u est strictement décroissante.
- 5. D'après un théorème, $u_0 + u_1 + ... + u_{15} = 1,02 \times \frac{1 0.5^{16}}{1 0.5}$.